Specimen Paper 2 HL

Q1 [5 marks]

The graph shows the variation with time t of the net force F acting on a body of mass 2.0 kg.

Initially the body moves to the left with speed 4.0 m s^{-1} . The net force is directed to the right. During the 4.0 seconds of this motion

 (a) Determine the maximum acceleration experienced by the body.	[1]
 (b) Estimate the average power developed by the force.	[4]

Q2 [5 marks]

The diagram shows the space-time axes of two inertial frames S and $\,S'\,.$

- (b) S' is moving towards a space station a distance 3.0 ly from the origin of S as measured by S. The
 - (i) Draw the worldline of the space station.

space station is at rest relative to S.

[1]

		State the time it will take S' to reach the space station according to S clocks.	[1]
	(iii)		[2]
		how the Rutherford-Geiger-Marsden scattering experiment led to the conclusion	[2]
(b)	A pluto	nium ($^{239}_{94}$ Pu) nucleus decays by alpha decay into a nucleus of uranium (U).	
	(i)	State the reaction equation for this decay.	[2]

	(ii)	The following binding energies per nucleon are available:				
		Plutonium	7.5603 MeV			
		Uranium	7.5909 MeV			
		Helium	7.0739 MeV			
	Estima	te the energy re	eased.			[2]
•••••				•••••		
				•••••		
•••••				•••••		••••••
•••••						
	(iii)	_		r uranium is larg	ger than that for pluto	•
		this observatio	n.			[2]
•••••				••••••		
•••••				••••••		
(c)	Large s	table nuclei hav	e more neutrons th	an protons. Expl	ain this observation.	[3]
(0)	zar ge o	table madici mav	e more negarons an	an protonor Exp.		[0]
•••••						
				•••••		
•••••				••••••		

Q4 [10 marks]

(a) Distinguish between a transverse and a longitudinal wave.

[2]

(b) The graph shows, at t = 0, the variation with distance of the displacement of particles in a medium in which a transverse wave of frequency 250 Hz is travelling to the right. d/cm

A particle P in the medium has been marked.

(i)	Calculate the speed of the wave.	[2]

(ii) Draw a graph to show the variation with time t of the displacement of P. [2]

(iii) State the equation giving the displacement of P in the form $x = x_0 \sin(\omega t + \phi)$ where x_0 , ω and ϕ are to be determined. [2]

(c) A standing wave is formed on a string with both ends fixed. The solid line represents the wave at t=0 and the dashed line at t=T/2 where T is the period. The blue line represents the wave at $t=\frac{T}{2}$.

The marked point shows the **equilibrium** position of a point P on the string.

At
$$t = \frac{T}{8}$$
 draw

Q5 [7 marks]

The HR diagram shows the Sun and three other stars X, Y and Z.

- (a) X is much hotter than Z yet X and Z have the same luminosity. Explain this observation. [2]
- (b) Calculate the ratio $\frac{R_Z}{R_V}$ of the radius of Z to that of Y. [3]
- (c) Gravitational pressure tends to make stars contract. X and Y are both stable stars. State how X and of Y manage to oppose their gravitational pressures.

(i) X [1]

(ii) Y [1]

06	[5	marks
Q.U	ייו	manns

Two parallel plates are oppositely charged. The potential difference between the plates is 240 V and their separation is 2.0 cm.

(a)	Draw the electric field lines for this arrangement.	[2]
(b)	Calculate the electric field strength between the plates.	[1]

(c) A proton is placed on the positively charged plate and is then released. The experiment is repeated with the proton replaced by an alpha particle.

Calculate the ratio $\frac{r_p}{v_\alpha}$ of the speed of the proton to that of the alpha particle when the	particles
reach the negative plate.	[2]

Q7 [7 marks]

A probe is launched from the surface of a planet with a speed that is half the escape speed.

		Outline what is meant by escape speed.	[1]
	(b)	Determine in terms of the radius of the planet, <i>R</i> , the maximum distance from the center planet reached by the probe.	er of the [3]
			
•••••	•••••		
• • • • • •			

(c) Another probe is launched from the surface of another planet. The diagram shows the probe at the instant of launch and the elliptical orbit followed by the probe.

(i)	On the diagram draw a dot to indicate a possible centre of the planet.	[1]
(ii)	Discuss how the speed of the probe at position P compares with the launch s	peed.
		[2]

Q8	[20	marks	Ī
----	-----	-------	---

(a) A container of fixed volume holds 7.0 mol of helium (${}_{2}^{4}$ He) at pressure 3.0×10⁵ Pa and temperature 270 K. The volume of a helium atom is about 3×10^{-30} m³. Calculate (i) the total volume of the molecules in the container, [2] (ii) the volume of the container, [2] (iii) the total mass of the helium gas. [1] State and explain, by reference to the kinetic model of gases, why it is reasonable to (b) consider helium in this container to behave as an ideal gas. [2]

(c)	The gas in (a) is heated at constant volume from a pressure of 3.0×10 ⁵ Pa and temperatur			
	270 K to a pressure of 5.0×10^5 Pa. Calculate the new temperature of the gas.	[2]		
(d)	Draw a line on the <i>P-V</i> diagram to represent the change in (c).	[1]		
 (e) (i)	Show that the change in the internal energy of helium is about 16 kJ.	[1]		
 (ii)	Estimate the specific heat capacity of helium.	[2]		

	(f)	The emission spectrum of helium contains photons of energy 1.86 eV. Sho	w that the
		wavelength of these photons is 667 nm.	[2]
•••••	•••••		

(g) The graph shows the variation of the intensity per unit wavelength I_{λ} of the black body radiation emitted by the Sun for wavelengths near 667 nm.

The curve shows a dip at a wavelength of 667 nm.

	Outline what is meant by black body radiation.	[2]

K.A. 130K03		
(ii)	Explain why the presence of the dip is evidence that the Sun contains helium.	[3]
Q9 [20 marks]		
The Earth orbits	s the Sun in a circular orbit of radius $R = 1.5 \times 10^{11}$ m.	
,*		

Show that the speed v of the Earth around the Sun is about 30 km s ⁻¹ .	[2]

(b) An asteroid collides with the Earth in a head on collision when the Earth is at X. The asteroid gets embedded into Earth. The asteroid moves with the same speed as the Earth.

(i)	Show that the speed u of the Earth-asteroid system immediately after the collision is
	given by

$$u = v \frac{M - m}{M + m}$$

	$u = v \frac{M}{M + m}$	
	where ${\it M}$ is the mass of the Earth and ${\it m}$ the mass of the asteroid.	[1]
(ii)	The asteroid impacts the Earth with a kinetic energy of 2×10^{25} J. Show th the asteroid is about 10^{16} kg.	at the mass of [2]
(c) The m	hass of Earth is $M = 6.0 \times 10^{24}$ kg. Assume that the orbit of the Earth stays circle.	ular after the
(i)	Suggest, with a reason, whether the new orbit radius of Earth will increase	[2]
		• • • • • • • • • • • • • • • • • • • •

K.A.	Tso	kos
1 417 41	. 50	1105

	(ii)	Predict whether the change in (c) (i) is	significant.	[1]
(q)	Assum	e that all the kinetic energy of the astero	aid in (h) (ii) goes into vanorizing rocks a	round the
(α)		t point. Ignore any thermal energy that w		Touris the
	The fo	llowing data are available for rocks at the	e point of impact:	
	Tempe	erature of rocks	300 K	
	Solid r	ock specific heat capacity	$850 \mathrm{Jkg^{-1} K^{-1}}$	
	Molte	n rock specific heat capacity	1450 Jkg ⁻¹ K ⁻¹	
	Meltin	g temperature of rocks	1700 K	
	Specifi	c latent heat of fusion of rocks	$1.6 \times 10^5 \text{ Jkg}^{-1}$	
	Boiling	temperature of rocks	2600 K	
	Specifi	c latent heat of vaporization of rocks	$1.1 \times 10^7 \text{ Jkg}^{-1}$	
	(i)	Estimate the mass of rocks that will be	vaporized.	[3]

	(ii)	Suggest whether the actual mass of rocks vaporized will be larger or smaller	than the
		estimate in (i).	[2]
•••••	••••••		
•••••			
	(iii)	The density of rock is 2800 kgm ⁻³ . Assume, for simplicity, that the shape of	the crater
	` ,	formed by the impact of the asteroid is a cube. Estimate, in km, the side of t	
			[2]
•••••			
•••••	••••••		•••••
(e)		ites are small spheres of rock and glass formed when molten rock solidifies. Arg	on is
		uced when potassium (19 K) in the rocks decays after absorbing an electron:	
	⁴⁰ K →	$-e^- ightarrow \Box \operatorname{Ar} + \nu$.	
(i) S	State the proton and nucleon numbers of argon.	[2]
•••••	••••••		•••••

	(11)	The half-life of potassium is 1.2×10^{10} yr. Tektites from a crater formed by an astimpact contain 0.996 of the potassium contained in tektites formed now.		
		Determine the time of impact.	[3]	
••••				
••••				

END OF EXAM

Markscheme

1		
а	$\frac{16}{2.0} = 8.0 \mathrm{ms}^{-2} \checkmark$	[1]
b	Impulse = area = 32 N s√	[4]
	$2\times v - 2\times (-4) = 32 \Longrightarrow v = 12 \text{ ms}^{-1} \checkmark$	
	Change in KE: $\frac{1}{2} \times 2 \times 12^2 - \frac{1}{2} \times 2 \times (-4)^2 = 128 \text{ J} \checkmark$	
	Average power: $\frac{128}{4} = 32 \text{ W} \checkmark$	
	OR	
	Impulse = area = 32 N s√	
	$2\times v - 2\times (-4) = 32 \Longrightarrow v = 12 \text{ ms}^{-1} \checkmark$	
	$\overline{P} = \overline{F} \frac{u+v}{2} \checkmark$	
	$\overline{P} = 8.0 \times \frac{-4.0 + 12}{2} = 32 \text{ W} \checkmark$	

2				
a		3.0 _ 0.60c ./	[1]	
		$\frac{3.0}{5.0} = 0.60c \checkmark$		
b	i	Vertical line through 3.0 ly✓	[1]	
		ct/Jy		
		6		
		5		
		3		
		хДу		
		7 1 2 3 4 5 6 749		
b	ii	5.0 years read from graph at intersection point ✓	[1]	
		OR 3.0 h		
		$\frac{3.0 \text{ ly}}{0.60c} = 5.0 \text{ yr} \checkmark$		
b	iii	5 ,	[2]	
		$\gamma = \frac{5}{4} \checkmark$		
		$\Delta t' = \gamma (\Delta t - \frac{v}{c^2} \Delta x) = \frac{5}{4} \times (5.0 - \frac{0.60c}{c^2} \times 3.0 \text{ly}) = 4.0 \text{ yr } \checkmark$		
		OR 5		
		$\gamma = \frac{5}{4} \checkmark$		
		$\Delta t' = \frac{5.0}{\gamma} = 4.0 \text{ yr } \checkmark$		
		OR		
		$\gamma = \frac{5}{4} \checkmark$		
		3.0 1.35 2.4 ly		
		$\Delta t' = \frac{\frac{1.25}{0.60c}}{0.60c} = \frac{2.4 \text{ ly}}{0.60c} = 4.0 \text{ yr} \checkmark$		
		1		

3			
а		A very small percentage of the incident alpha particles were scattered at very large scattering angles This required a huge electric force that could only be provided if the positive charge of the atom was concentrated in a very small, massive object	[2]
b	i	$^{239}_{94}$ Pu $\rightarrow ^{235}_{92}$ U + $^{4}_{2}\alpha$ Correct numbers for U ✓	[2]
b	ii	235×7.5909+4×7.0739−239×7.5603 ✓ 5.25 MeV ✓	[2]
b	iii	Binding energy per nucleon is a measure of the stability of a nucleus ✓ And uranium is more stable than plutonium ✓	[2]
С		Protons tend to break a nucleus apart because the electric force is repulsive ✓ Putting extra neutrons means average distance between protons increases and so tendency to split decreases ✓ And neutrons contribute to bonding through the strong nuclear force ✓	[3]

4			
а		In a transverse wave the displacement is at right angles to the direction of energy transfer ✓ In a longitudinal wave the displacement is parallel to the direction of energy transfer ✓	[2]
b	i	$\lambda = 0.30 \mathrm{m}\checkmark$	[2]
		$v = f\lambda = 250 \times 0.30 = 75 \text{ms}^{-1} \checkmark$	
b	ii	d/cm 4 2 0 1 2 3 t/ms -2 -4 Correct shape Correct period Correct period	[2]

b	iii	$y = -4\sin(500\pi t) \checkmark$ $y = 4\sin(500\pi t + \pi) \checkmark$	[2]
		$y = 4\sin(500\pi t + \pi)\checkmark$	
С	i	P	[1]
С	ii		[1]

5			
а		Luminosity also depends on area ✓	[2]
		Star Z has a much larger area than X√	
b	i	$\frac{L_{z}}{L_{y}} = \frac{4\pi\sigma R_{z}^{2} T_{z}^{4}}{4\pi\sigma R_{y}^{2} T_{y}^{4}} = 10^{6} \checkmark$ $\frac{R_{z}}{R_{y}} = \sqrt{10^{6} \times \frac{20000^{4}}{2500^{4}}} \checkmark$ $\frac{R_{z}}{R_{y}} = 6.4 \times 10^{4} \checkmark$	[3]
С	i	X: by radiation pressure caused by fusion reactions ✓	[1]
С	ii	Y: by electron degeneracy pressure ✓	[1]

6		
а	Uniform lines from left to right in the interior ✓	[2]
	Edge effects ✓	
b	$E = \frac{V}{d} = \frac{240}{2.0 \times 10^{-2}} = 1.2 \times 10^{4} \text{ NC}^{-1} \checkmark$	[1]
	$d = 2.0 \times 10^{-2}$	
С	$qV = \frac{1}{2}mv^2 \Longrightarrow v = \sqrt{\frac{2qV}{m}} \checkmark$	[2]
	$\frac{v_{p}}{v_{\alpha}} = \sqrt{\frac{q_{p}m_{\alpha}}{q_{\alpha}m_{p}}} = \sqrt{\frac{1}{2} \times 4} = \sqrt{2} \checkmark$	

7			
а		The speed at launch so that the projectile reaches infinity with	[1]
		zero speed✓	
b		$\frac{1}{2}mu^{2} - \frac{GMm}{R} = -\frac{GMm}{r} \checkmark$ $\frac{1}{2}m \times \frac{1}{4} \times \frac{2GM}{R} - \frac{GMm}{R} = -\frac{GMm}{r} \checkmark$ $r = \frac{4R}{3} \checkmark$	[3]
С	i	Along top part of major axis not to scale	[1]
С	ii	It is less ✓ Because at P the potential energy is a maximum and so kinetic energy a minimum ✓ OR Angular momentum mvr is conserved ✓ r is maximum at P so speed is minimum ✓	[2]

8			
а	i	$N = 7.0 \times 6.02 \times 10^{23} = 4.2 \times 10^{24} \checkmark$	[2]
		$4.2 \times 10^{24} \times 3.0 \times 10^{-30} = 1.3 \times 10^{-5} \text{ m}^3 \checkmark$	
а	ii	$V = \frac{RnT}{P} \checkmark$	[2]
		$V = \frac{8.31 \times 7.0 \times 270}{3.0 \times 10^5} = 5.2 \times 10^{-2} \text{ m}^3 \checkmark$	
а	iii	7×4=28 g ✓	[1]
b		One of the assumptions of the kinetic theory of gases states that the volume of the molecules is negligible compared to the volume of the gas ✓	[2]
		Here $\frac{V_{\text{molecules}}}{V_{\text{gas}}} = \frac{1.3 \times 10^{-5}}{5.2 \times 10^{-2}} = 2.5 \times 10^{-4}$ which is very small \checkmark	
С		$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Longrightarrow T_2 = T_1 \times \frac{P_2}{P_1} \checkmark$	[2]
		$T_2 = 270 \times \frac{5.0}{3.0} = 450 \text{ K} \checkmark$	
d			[1]
		P	
		0	
		0 V	
		Vertical straight line ✓	
е	i	$\Delta U = \frac{3}{2} Rn \Delta T = \frac{3}{2} \times 8.31 \times 7.0 \times (450 - 270) = 15706 \text{ J} \checkmark$	[1]
е	ii	Realization that $Q = \Delta U \checkmark$	[2]
		$c = \frac{Q}{m\Delta T} = \frac{15705}{0.028 \times (450 - 270)} = 3.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \checkmark$	
f		$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} \checkmark$	[2]
		$\lambda = \frac{1.24 \times 10^{-6}}{1.86} = 666.6 \approx 667 \text{ nm} \checkmark$	
g	i	[2] max from	[2]
		Electromagnetic radiation with an infinite rage of wavelengths✓	max

		With a peak determined by temperature ✓ Radiation emitted by a body at some finite kelvin temperature ✓ Radiation with an intensity proportional to the 4 th power of the kelvin temperature ✓	
g	ii	Helium has energy levels separated by 1.86 eV ✓ This energy difference is unique to helium ✓ The dip implies that photons of this energy are absorbed «by electrons in helium atoms in the outer layers of the Sun which then make a transition between the 2 levels» ✓	[3]

9				\Box
а		$v = \frac{2\pi R}{T} = \frac{2\pi \times 1.5 \times 10^{11}}{365 \times 24 \times 60 \times 60} \checkmark$	[2]	.]
		$V = \frac{T}{T} = \frac{365 \times 24 \times 60 \times 60}{365 \times 24 \times 60 \times 60}$		
		$v = 2.99 \times 10^4 \approx 3.0 \times 10^4 \text{ ms}^{-1} = 30 \text{ kms}^{-1} \checkmark$		
b	i	$Mv - mv = (M + m)u \checkmark$	[1]	.]
		Result follows		
b	ii	$m = \frac{2 \times 2 \times 10^{25}}{(2.99 \times 10^4)^2} \checkmark$	[2]	.]
		$m = \frac{1}{(2.99 \times 10^4)^2}$		
		$m = 4.47 \times 10^{16} \text{ kg} \checkmark$		
С	i		[2]	<u>']</u>
		$R = \frac{GM_{\odot}}{u^2} \checkmark$		
		u < v so R increases ✓		
С	ii	The mass of the asteroid is much smaller than that of earth so change in R is	[1]	.]
		not significant√		
		(For the aficionados!		
		$u^{2} = \frac{GM_{\odot}}{R'} \Rightarrow R' = \frac{GM_{\odot}}{\left(\frac{M-m}{M+m}v\right)^{2}} = \frac{GM_{\odot}(M+m)^{2}}{v^{2}(M-m)^{2}} = \frac{GM_{\odot}}{v^{2}} \frac{M^{2}(1+\frac{m}{M})^{2}}{M^{2}(1-\frac{m}{M})^{2}}$		
		$R' = \frac{GM_{\odot}}{v^2} \times \frac{(1 + \frac{m}{M})^2}{(1 - \frac{m}{M})^2} = R \frac{(1 + \frac{m}{M})^2}{(1 - \frac{m}{M})^2}$		
		From Math HL we know that		
		$\frac{(1+\frac{m}{M})^2}{(1-\frac{m}{M})^2} \approx (1+\frac{2m}{M})(1+\frac{2m}{M}) \approx 1+\frac{4m}{M}$		
		Hence the change in orbit radius is an increase of		
		$\Delta R \approx R \times \frac{4m}{M} \approx 1.5 \times 10^{11} \times 4 \times \frac{5 \times 10^{16}}{6 \times 10^{24}} \approx 5 \text{ km} \text{ and so insignificant.}$		
d	i	Thermal energy needed	[3]	[]

		$M \times 850 \times (1700 - 300) + M \times 1.6 \times 10^5 + M \times 1450 \times (2600 - 1700) + M \times 1.1 \times 10^7 \checkmark$	
		$=M\times1.3655\times10^{7}\checkmark$	
		$M = \frac{2 \times 10^{25}}{1.3655 \times 10^7} = 1.46 \times 10^{18} \approx 1.5 \times 10^{18} \text{ kg} \checkmark$	
d	ii	Smaller√	[2]
		Some of the kinetic energy will go as thermal energy in the asteroid and the surrounding air ✓	
d	iii	Volume of rocks vaporized is $\frac{1.46 \times 10^{18}}{2800} = 5.21 \times 10^{14} \text{ m}^3 \checkmark$	[2]
		Side of cube $(5.21 \times 10^{14})^{1/3} = 8 \times 10^4 \text{ m} \approx 80 \text{ km} \checkmark$	
е	i	Z = 18 √	[2]
		A = 40√	
е	ii	Decay constant is $\frac{\ln 2}{1.2 \times 10^{10}} = 5.78 \times 10^{-11} \text{ yr}^{-1} \checkmark$	[3]
		$0.996 = e^{-5.78 \times 10^{-11} \times t} \checkmark$	
		$t = 6.9 \times 10^7 \text{ yr} \approx 69 \text{ million years } \checkmark$	